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Preface

The tremendous growth of scientific knowledge over the past 50 years has resulted
in an intense pressure on the engineering curricula of many universities to substitute
“modern” subjects in place of subjects perceived as weaker or outdated. The result
is that, for some, the kinematics and dynamics of machines has remained a critical
component of the curriculum and a requirement for all mechanical engineering students,
while at others, a course on these subjects is only made available as an elective topic for
specialized study by a small number of engineering students. Some schools, depending
largely on the faculty, require a greater emphasis on mechanical design at the expense
of depth of knowledge in analytical techniques. Rapid advances in technology, however,
have produced a need for a textbook that satisfies the requirement of new and changing
course structures.

Much of the new knowledge in the theory of machines and mechanisms currently
exists in a large variety of technical journals and manuscripts, each couched in its
own singular language and nomenclature and each requiring additional background for
clear comprehension. It is possible that the individual published contributions could be
used to strengthen engineering courses if the necessary foundation was provided and
a common notation and nomenclature was established. These new developments could
then be integrated into existing courses to provide a logical, modern, and comprehensive
whole. The purpose of this book is to provide the background that will allow such an
integration.

This book is intended to cover that field of engineering theory, analysis, design,
and practice that is generally described as mechanisms or as kinematics and dynamics
of machines. Although this text is written primarily for students of mechanical
engineering, the content can also be of considerable value to practicing engineers
throughout their professional careers.

To develop a broad and basic comprehension, the text presents numerous methods
of analysis and synthesis that are common to the literature of the field. The authors have
included graphic methods of analysis and synthesis extensively throughout the book,
because they are firmly of the opinion that graphic methods provide visual feedback
that enhances the student’s understanding of the basic nature of, and interplay between,
the underlying equations. Therefore, graphic methods are presented as one possible
solution technique, but are always accompanied by vector equations defined by the
fundamental laws of mechanics, rather than as graphic “tricks” to be learned by rote and
applied blindly. In addition, although graphic techniques, performed by hand, may lack
accuracy, they can be performed quickly, and even inaccurate sketches can often provide
reasonable estimates of a solution and can be used to check the results of analytic or
numeric solution techniques.

xvii
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The authors also use conventional methods of vector analysis throughout the
book, both in deriving and presenting the governing equations and in their solution.
Raven’s methods using complex algebra for the solution of two-dimensional vector
equations are included because of their compactness, because of the ease of taking
derivatives, because they are employed so frequently in the literature, and because
they are so easy to program for computer evaluation. In the chapter dealing with
three-dimensional kinematics and robotics, the authors present a brief introduction to
Denavit and Hartenberg’s methods using transformation matrices.

Another feature of this text is its focus on the method of kinematic coefficients,
which are derivatives of motion variables with respect to the input position variable(s)
rather than with respect to time. The authors believe that this analytic technique provides
several important advantages, namely: (1) Kinematic coefficients clarify for the student
those parts of a motion problem that are kinematic (geometric) in their nature, and
clearly separate these from the parts that are dynamic or speed dependent. (2) Kinematic
coefficients help to integrate the analysis of different types of mechanical systems, such
as gears, cams, and linkages, which might not otherwise seem similar.

One dilemma that all writers on the subject of this book have faced is how to
distinguish between the motions of different points of the same moving body and the
motions of coincident points of different moving bodies. In other texts, it has been
customary to describe both of these as “relative motion”; however, because they are
two distinctly different situations and are described by different equations, this causes
the student confusion in distinguishing between them. We believe that we have greatly
relieved this problem by the introduction of the terms motion difference and apparent
motion and by using different terminology and different notation for the two cases.
Thus, for example, this book uses the two terms velocity difference and apparent
velocity, instead of the term “relative velocity,” which will not be found when speaking
rigorously. This approach is introduced beginning with position and displacement, used
extensively in the chapter on velocity, and brought to fulfillment in the chapter on
accelerations, where the Coriolis component always arises in, and only arises in, the
apparent acceleration equation.

Access to personal computers, programmable calculators, and laptop computers
is commonplace and is of considerable importance to the material of this book. Yet
engineering educators have told us very forcibly that they do not want computer
programs included in the text. They prefer to write their own programs, and they expect
their students to do so as well. Having programmed almost all the material in the book
many times, we also understand that the book should not include such programs and
thus become obsolete with changes in computers or programming languages.

The authors have endeavored to use US Customary units and SI units in about
equal proportions throughout the book. However, there are certain exceptions. For
example, in Chapter 14 (Dynamics of Reciprocating Engines), only SI units are
presented, because engines are designed for an international marketplace, even by US
companies. Therefore, they are always rated in kilowatts rather than horsepower, they
have displacements in liters rather than cubic inches, and their cylinder pressures are
measured in kilopascals rather than pounds per square inch.

Part 1 of this book deals mostly with theory, nomenclature, notation, and methods
of analysis. Serving as an introduction, Chapter 1 tells what a mechanism is, what



PREFACE xix

a mechanism can do, how mechanisms can be classified, and what some of their
limitations are. Chapters 2, 3, and 4 are concerned totally with analysis, specifically with
kinematic analysis, because they cover position, velocity, and acceleration analyses,
respectively, of single-degree-of-freedom planar mechanisms. Chapter 5 expands this
background to include multi-degree-of-freedom planar mechanisms.

Part 2 of the book goes on to demonstrate engineering applications involving the
selection, the specification, the design, and the sizing of mechanisms to accomplish
specific motion objectives. This part includes chapters on cam systems, gears, gear
trains, synthesis of linkages, spatial mechanisms, and an introduction to robotics.
Chapter 6 is a study of the geometry, kinematics, proper design of high-speed cam
systems, and now includes material on the dynamics of elastic cam systems. Chapter 7
studies the geometry and kinematics of spur gears, particularly of involute tooth profiles,
their manufacture, and proper tooth meshing, and then studies gear trains, with an
emphasis on epicyclic and differential gear trains. Chapter 8 expands this background to
include helical gears, bevel gears, worms, and worm gears. Chapter 9 is an introduction
to the kinematic synthesis of planar linkages. Chapter 10 is a brief introduction to
the kinematic analysis of spatial mechanisms and robotics, including the forward and
inverse kinematics problems.

Part 3 of the book adds the dynamics of machines. In a sense, this part is concerned
with the consequences of the mechanism design specifications. In other words, having
designed a machine by selecting, specifying, and sizing the various components,
what happens during the operation of the machine? What forces are produced? Are
there any unexpected operating results? Will the proposed design be satisfactory in
all respects? Chapter 11 presents the static force analysis of machines. This chapter
also includes sections focusing on the buckling of two-force members subjected to
axial loads. Chapter 12 studies the planar and spatial aspects of the dynamic force
analysis of machines. Chapter 13 then presents the vibration analysis of mechanical
systems. Chapter 14 is a more detailed study of one particular type of mechanical
system, namely the dynamics of both single- and multi-cylinder reciprocating engines.
Chapter 15 next addresses the static and dynamic balancing of rotating and reciprocating
systems. Finally, Chapter 16 is on the study of the dynamics of flywheels, governors,
and gyroscopes.

As with all texts, the subject matter of this book also has limitations. Probably
the clearest boundary on the coverage in this text is that it is limited to the study of
rigid-body mechanical systems. It does study planar multibody systems with movable
connections or constraints between them. However, all motion effects are assumed to
come within the connections; the shapes of the individual bodies are assumed constant,
except for the dynamics of elastic cam systems. This assumption is necessary to allow
the separate study of kinematic effects from those of dynamics. Because each individual
body is assumed rigid, it can have no strain; therefore, except for buckling of axially
loaded members, the study of stress is also outside the scope of this text. It is hoped,
however, that courses using this text can provide background for the later study of stress,
strength, fatigue life, modes of failure, lubrication, and other aspects important to the
proper design of mechanical systems.

Despite the limitations on the scope of this book, it is still clear that it is not reason-
able to expect that all of the material presented here can be covered in a single-semester
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course. As stated above, a variety of methods and applications have been included to
allow the instructor to choose those topics that best fit the course objectives and to still
provide a reference for follow-on courses and help build the student’s library. Yet, many
instructors have asked for suggestions regarding a choice of topics that might fit a 3-hour
per week, 15-week course. Two such outlines follow, as used by two of the authors to
teach such courses at their institutions. It is hoped that these might be used as helpful
guidelines to assist others in making their own parallel choices.

Tentative Schedule I

Kinematics and Dynamics of Machine Systems

Week Topics Sections

1 Introduction to Mechanisms 1.1–1.10

Kutzbach and Grashof Criteria 1.6, 1.9

Advance-to-Return Time Ratio 1.7

Overlay Method of Synthesis 9.8

2 Vector Loop-Closure Equation 2.6, 2.7

Velocity Difference Equation 3.1–3.3

Velocity Polygons; Velocity Images 3.4

3 Apparent Velocity Equation 3.5, 3.6, 3.8

Direct and Rolling Contact Velocity 3.7

4 Instantaneous Centers of Velocity 3.12

Aronhold–Kennedy Theorem of Three Centers 3.13, 3.14

Use of Instant Centers to Find Velocities 3.15, 3.16

5 Exam #1

Acceleration Difference Equation 4.1–4.3

Acceleration Polygons; Acceleration Images 4.4

6 Apparent Acceleration Equation 4.5, 4.6

Coriolis Component of Acceleration

7 Direct and Rolling Contact Acceleration 4.7, 4.8

Review of Velocity and Acceleration Analyses

8 Raven’s Method of Kinematic Analysis 2.10, 3.10, 4.10

Kinematic Coefficients 3.11, 4.11

Computer Methods in Kinematics 10.9
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9 Exam #2

Static Forces 11.1–11.6

Two-, Three-, and Four-Force Members 11.7, 11.8

Force Polygons

10 Coulomb Friction Forces in Machines 11.9, 11.10

11 D’Alembert’s Principle 12.1–12.4

Dynamic Forces in Machine Members 12.4, 12.5

12 Introduction to Cam Design 6.1–6.4

Choice of Cam Profiles; Matching Displacement Curves 6.5–6.8

13 First-Order Kinematic Coefficients; Face Width; Pressure
Angle

6.9

Second-Order Kinematic Coefficients; Pointing and Under-
cutting

6.10

14 Exam #3

Introduction to Gearing 7.1–7.6

Involute Tooth Geometry; Contact Ratio; Undercutting 7.7–7.9, 7.11

15 Epicyclic and Differential Gear Trains 7.15–7.17

Review

Final Exam

Tentative Schedule II

Machine Design I

Week Topics Sections

1 The World of Mechanisms 1.1–1.6

Measures of Performance (Indices of Merit) 1.10, 3.19

Quick Return Mechanisms 1.7

2 Position Analysis. Vector Loops 2.1–2.7

Newton–Raphson Technique 2.8, 2.11

3 Velocity Analysis 3.1–3.9

First-Order Kinematic Coefficients 3.11

Instant Centers of Zero Velocity 3.12–3.17
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4 Rolling Contact, Rack and Pinion, Two Gears 3.10

Acceleration Analysis 4.1–4.4

Second-Order Kinematic Coefficients 4.5–4.11

5 Geometry of a Point Path 4.15

Kinematic Coefficients for Point Path 4.15

Radius and Center of Curvature 4.16

6 Cam Design 6.1–6.4

Lift Curve 6.1–6.4

Exam 1

7 Kinematic Coefficients of the Follower 6.5

Roller Follower 6.10

Flat-Face Follower 6.9

8 Graphic Approach 11.5, 11.6

Two-, Three-, and Four-Force Members 11.7, 11.8

Friction-Force Models 11.9, 11.10

9 Dynamic Force Analysis 12.1–12.3

Force and Moment Equations 12.4–12.6

Static Force Analysis 11.1–11.4

10 Power Equation 12.9

Kinetic, Potential, and Dissipative Energy 12.9

Equivalent Inertia and Equivalent Mass 12.9

11 Equation of Motion 12.9

Critical Speeds of a Shaft 13.17

Exam #2

12 Exact Equation 13.17

Dunkerley and Rayleigh–Ritz Approximations 13.17

Shaking Forces and Moments 14.5

13 Rotating Unbalance 15.3

Discrete Mass System 15.5

Distributed Mass System 15.5
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14 Reciprocating Unbalance 15.9

Single-Cylinder Engine 15.9

Multi-Cylinder Engine 15.10

15 Primary Shaking Forces 15.11

Secondary Shaking Forces 15.11

Comparison of Forces 15.9

Final Exam

Supplement packages for this fifth edition have been designed to support both
the student and the instructor in the kinematics and dynamics course. The Companion
Website (http://www.oup.com/us/uicker) will include a list of any errors discovered in
the text and their corrections. This website also includes over 100 animations of key
figures from the text; these are marked with a symbol in the text. These animations,
created by Zhong Hu of South Dakota State University, are presented in both Working
Model and .avi file formats, and are meant to help students visualize and comprehend
the movement of important mechanisms.
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Kinematics and Mechanisms





1 The World of Mechanisms

1.1 INTRODUCTION

The theory of machines and mechanisms is an applied science that is used to understand the
relationships between the geometry and motions of the parts of a machine, or mechanism,
and the forces that produce these motions. The subject, and therefore this book, divides
itself naturally into three parts. Part 1, which includes Chaps. 1 through 5, is concerned
with mechanisms and the kinematics of mechanisms, which is the analysis of their motions.
Part 1 lays the groundwork for Part 2, comprising Chaps. 6 through 10, in which we study
methods of designing mechanisms. Finally, in Part 3, which includes Chaps. 11 through
16, we take up the study of kinetics, the time-varying forces in machines and the resulting
dynamic phenomena that must be considered in their design.

The design of a modern machine is often very complex. In the design of a new engine,
for example, the automotive engineer must deal with many interrelated questions. What
is the relationship between the motion of the piston and the motion of the crankshaft?
What are the sliding velocities and the loads at the lubricated surfaces, and what lubricants
are available for this purpose? How much heat is generated, and how is the engine
cooled?What are the synchronization and control requirements, and how are they satisfied?
What is the cost to the consumer, both for initial purchase and for continued operation
and maintenance? What materials and manufacturing methods are used? What are the
fuel economy, noise, and exhaust emissions; do they meet legal requirements? Although
all these and many other important questions must be answered before the design is
completed, obviously not all can be addressed in a book of this size. Just as people with
diverse skills must be brought together to produce an adequate design, so too must many
branches of science be brought together. This book assembles material that falls into the
science of mechanics as it relates to the design of mechanisms and machines.
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1.2 ANALYSIS AND SYNTHESIS

There are two completely different aspects of the study of mechanical systems: design and
analysis. The concept embodied in the word “design” is more properly termed synthesis,
the process of contriving a scheme or a method of accomplishing a given purpose. Design
is the process of prescribing the sizes, shapes, material compositions, and arrangements of
parts so that the resulting machine will perform the prescribed task.

Although there are many phases in the design process that can be approached in a
well-ordered, scientific manner, the overall process is by its very nature as much an art as
a science. It calls for imagination, intuition, creativity, judgment, and experience. The role
of science in the design process is merely to provide tools to be used by designers as they
practice their art.

In the process of evaluating the various interacting alternatives, designers find a need
for a large collection of mathematical and scientific tools. These tools, when applied
properly, provide more accurate and more reliable information for judging a design
than one achieves through intuition or estimation. Thus, the tools are of tremendous
help in deciding among alternatives. However, scientific tools cannot make decisions for
designers; designers have every right to exert their imagination and creative abilities, even
to the extent of overruling the mathematical recommendations.

Probably the largest collection of scientific methods at the designer’s disposal fall
into the category called analysis. These are techniques that allow the designer to critically
examine an already existing, or proposed, design to judge its suitability for the task. Thus,
analysis in itself is not a creative science but one of evaluation and rating things already
conceived.

We should bear in mind that, although most of our effort may be spent on analysis,
the real goal is synthesis: the design of a machine or system. Analysis is simply a tool;
however, it is a vital tool and will inevitably be used as one step in the design process.

1.3 SCIENCE OF MECHANICS

The branch of scientific analysis that deals with motions, time, and forces is called
mechanics and is made up of two parts: statics and dynamics. Statics deals with the analysis
of stationary systems—that is, those in which time is not a factor—and dynamics deals with
systems that change with time.

As shown in Fig. 1.1, dynamics is also made up of two major disciplines, first
recognized as separate entities by Euler∗ in 1765 [2]:†

The investigation of the motion of a rigid body may be conveniently separated
into two parts, the one, geometrical, and the other mechanical. In the first part,
the transference of the body from a given position to any other position must be
investigated without respect to the causes of the motion, and must be represented
by analytical formulae, which will define the position of each point of the body. This

∗ Leonhard Euler (1707–1783).
† Numbers in square brackets refer to references at the end of each chapter.
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Figure 1.1

investigation will therefore be referable solely to geometry, or rather to stereotomy
[the art of stonecutting, now referred to as descriptive geometry].
It is clear that by the separation of this part of the question from the other, which

belongs properly to Mechanics, the determination of the motion from dynamical
principles will be made much easier than if the two parts were undertaken conjointly.

These two aspects of dynamics were later recognized as the distinct sciences of
kinematics (cinématique was a term coined by Ampère∗ and derived from the Greek word
kinema, meaning motion) and kinetics and deal with motion and the forces producing the
motion, respectively.

The initial problem in the design of a mechanical system, therefore, is understanding
the kinematics. Kinematics is the study of motion, quite apart from the forces that produce
the motion. In particular, kinematics is the study of position, displacement, rotation,
speed, velocity, acceleration, and jerk. The study, say, of planetary or orbital motion is
also a problem in kinematics, but in this book we shall concentrate our attention on
kinematic problems that arise in the design and operation of mechanical systems. Thus,
the kinematics of machines and mechanisms is the focus of the next several chapters of
this book. In addition, statics and kinetics are also vital parts of a complete design analysis,
and they are also covered in later chapters.

It should be carefully noted in the previous quotation that Euler based his separation of
dynamics into kinematics and kinetics on the assumption that they deal with rigid bodies. It
is this very important assumption that allows the two to be treated separately. For flexible
bodies, the shapes of the bodies themselves, and therefore their motions, depend on the
forces exerted on them. In this situation, the study of force and motion must take place
simultaneously, thus significantly increasing the complexity of the analysis.

Fortunately, although all real machine parts are flexible to some degree, machines are
usually designed from relatively rigid materials, keeping part deflections to a minimum.
Therefore, it is common practice to assume that deflections are negligible and parts
are rigid while analyzing a machine’s kinematic performance and then, during dynamic
analysis when loads are sought, to design the parts so that the assumption is justified. A
more detailed discussion of a rigid body compared to a deformable, or flexible, body is
presented in the introduction to static force analysis in Sec. 11.1.

∗ André-Marie Ampère (1775–1836).
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1.4 TERMINOLOGY, DEFINITIONS, AND ASSUMPTIONS

Reuleaux∗ defines a machine† as a “combination of resistant bodies so arranged that by
their means the mechanical forces of nature can be compelled to do work accompanied by
certain determinate motions.” He also defines a mechanism as an “assemblage of resistant
bodies, connected by movable joints, to form a closed kinematic chain with one link fixed
and having the purpose of transforming motion.”

Some light can be shed on these definitions by contrasting them with the term
structure. A structure is also a combination of resistant (rigid) bodies connected by joints,
but the purpose of a structure (such as a truss) is not to do work or to transform motion, but
to be rigid. A truss can perhaps be moved from place to place and is movable in this sense of
the word; however, it has no internalmobility. A structure has no relative motions between
its various links, whereas both machines and mechanisms do. Indeed, the whole purpose of
a machine or mechanism is to utilize these relative internal motions in transmitting power
or transforming motion.

A machine is an arrangement of parts for doing work, a device for applying power or
changing the direction of motion. It differs from a mechanism in its purpose. In a machine,
terms such as force, torque, work, and power describe the predominant concepts. In a
mechanism, though it may transmit power or force, the predominant idea in the mind of
the designer is one of achieving a desired motion. There is a direct analogy between the
terms structure, mechanism, and machine and the branches of mechanics illustrated in
Fig. 1.1. The term “structure” is to statics as the term “mechanism” is to kinematics and as
the term “machine” is to kinetics.

We use the word link to designate a machine part or a component of a mechanism.
As discussed in the previous section, a link is assumed to be completely rigid. Machine
components that do not fit this assumption of rigidity, such as springs, usually have no
effect on the kinematics of a device but do play a role in supplying forces. Such parts or
components are not called links; they are usually ignored during kinematic analysis, and
their force effects are introduced during force analysis (see the analysis of buckling in Secs.
11.14–11.18). Sometimes, as with a belt or chain, a machine part may possess one-way
rigidity; such a body can be considered a link when in tension but not under compression.

The links of a mechanism must be connected in some manner in order to transmit
motion from the driver, or input, to the driven, or follower, or output. The connections, the
joints between the links, are called kinematic pairs (or simply pairs), because each joint
consists of a pair of mating surfaces, two elements, one mating surface or element being
a part of each of the joined links. Thus, we can also define a link as the rigid connection
between two or more joint elements.

Stated explicitly, the assumption of rigidity is that there can be no relative motion (no
change in distance) between two arbitrarily chosen points on the same link. In particular,

∗ Much of the material of this section is based on definitions originally set down by Franz Reuleaux
(1829–1905), a German kinematician whose work marked the beginning of a systematic treatment
of kinematics [7].
† There appears to be no agreement at all on the proper definition of a machine. In a footnote
Reuleaux gives 17 definitions, and his translator gives 7 more and discusses the whole problem
in detail [7].
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the relative positions of joint elements on any given link do not change no matter what loads
are applied. In other words, the purpose of a link is to hold a constant spatial relationship
between its joint elements.

As a result of the assumption of rigidity, many of the intricate details of the actual part
shapes are unimportant when studying the kinematics of a machine or mechanism. For this
reason, it is common practice to draw highly simplified schematic diagrams that contain
important features of the shape of each link, such as the relative locations of joint elements,
but that completely subdue the real geometry of the manufactured part. The slider-crank
linkage of the internal combustion engine, for example, can be simplified for purposes of
analysis to the schematic diagram illustrated later in Fig. 1.3b. Such simplified schematics
are a great help since they eliminate confusing factors that do not affect the analysis; such
diagrams are used extensively throughout this text. However, these schematics also have
the drawback of bearing little resemblance to physical hardware. As a result they may give
the impression that they represent only academic constructs rather than real machinery. We
should continually bear in mind that these simplified diagrams are intended to carry only
the minimum necessary information so as not to confuse the issue with unimportant detail
(for kinematic purposes) or complexity of the true machine parts.

When several links are connected together by joints, they are said to form a kinematic
chain. Links containing only two joint elements are called binary links, those having
three joint elements are called ternary links, those having four joint elements are called
quaternary links, and so on. If every link in a chain is connected to at least two other links,
the chain forms one or more closed loops and is called a closed kinematic chain; if not, the
chain is referred to as open. If a chain consists entirely of binary links, it is a simple-closed
chain. Compound-closed chains, however, include other than binary links and thus form
more than a single closed loop.

Recalling Reuleaux’s definition of a mechanism, we see that it is necessary to have a
closed kinematic chain with one link fixed. When we say that one link is fixed, we mean
that it is chosen as the frame of reference for all other links; that is, the motions of all
points on the links of the mechanism are measured with respect to the fixed link. This
link, in a practical machine, usually takes the form of a stationary platform or base (or
a housing rigidly attached to such a base) and is commonly referred to as the ground,
frame, or base link.∗ The question of whether this reference frame is truly stationary (in
the sense of being an inertial reference frame) is immaterial in the study of kinematics, but
becomes important in the investigation of kinetics, where forces are considered. In either
case, once a frame link is designated (and other conditions are met), the kinematic chain
becomes a mechanism and, as the driver is moved through various positions, all other links
have well-defined motions with respect to the chosen frame of reference. We use the term
kinematic chain to specify a particular arrangement of links and joints when it is not clear
which link is to be treated as the frame. When the frame link is specified, the kinematic
chain is called a mechanism.

For a mechanism to be useful, the motions between links cannot be completely
arbitrary; they too must be constrained to produce the proper relative motions—those
chosen by the designer for the particular task to be performed. These desired relative

∗ In this text, the ground, frame, or base of the mechanism is commonly numbered 1.
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motions are achieved by proper choice of the number of links and the kinds of joints used
to connect them. Thus we are led to the concept that, in addition to the distances between
successive joints, the nature of the joints themselves and the relative motions they permit
are essential in determining the kinematics of a mechanism. For this reason, it is important
to look more closely at the nature of joints in general terms, and in particular at several of
the more common types.

The controlling factors that determine the relative motions allowed by a given joint are
the shapes of the mating surfaces or elements. Each type of joint has its own characteristic
shapes for the elements, and each allows a given type of motion, which is determined by
the possible ways in which these elemental surfaces can move with respect to each other.
For example, the pin joint in Fig. 1.2a, has cylindric elements, and, assuming that the links
cannot slide axially, these surfaces permit only relative rotational motion. Thus a pin joint
allows the two connected links to experience relative rotation about the pin center. So, too,
other joints each have their own characteristic element shapes and relative motions. These
shapes restrict the totally arbitrary motion of two unconnected links to some prescribed
type of relative motion and form constraining conditions (constraints) on the mechanism’s
motion.

It should be pointed out that the element shapes may often be subtly disguised and
difficult to recognize. For example, a pin joint might include a needle bearing, so that
two mating surfaces, as such, are not distinguishable. Nevertheless, if the motions of the
individual rollers are not of interest, the motions allowed by the joints are equivalent, and
the joints are of the same generic type. Thus the criterion for distinguishing different joint
types is the relative motions they permit and not necessarily the shapes of the elements,
though these may provide vital clues. The diameter of the pin used (or other dimensional
data) is also of no more importance than the exact sizes and shapes of the connected
links. As stated previously, the kinematic function of a link is to hold a fixed geometric
relationship between the joint elements. Similarly, the only kinematic function of a joint,
or pair, is to determine the relative motion between the connected links. All other features
are determined for other reasons and are unimportant in the study of kinematics.

When a kinematic problem is formulated, it is necessary to recognize the type of
relative motion permitted in each of the joints and to assign to it some variable parameter(s)
for measuring or calculating the motion. There will be as many of these parameters as there
are degrees of freedom of the joint in question, and they are referred to as joint variables.
Thus, the joint variable of a pinned joint will be a single angle measured between reference
lines fixed in the adjacent links, while a spheric joint will have three joint variables (all
angles) to specify its three-dimensional rotation.

Reuleaux separated kinematic pairs into two categories: namely, higher pairs and
lower pairs, with the latter category consisting of the six prescribed types to be discussed
next. He distinguished between the categories by noting that lower pairs, such as the
pin joint, have surface contact between the joint elements, while higher pairs, such as
the connection between a cam and its follower, have line or point contact between the
elemental surfaces. This criterion, however, can be misleading (as noted in the case of a
needle bearing). We should rather look for distinguishing features in the relative motion(s)
that the joint allows between the connected links.

Lower pairs consist of the six prescribed types shown in Fig. 1.2.
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Figure 1.2 (a) Revolute; (b) prism; (c) screw; (d) cylinder; (e) sphere; ( f ) flat pairs.

The names and the symbols (Hartenberg and Denavit [4]) that are commonly
employed for the six lower pairs are presented in Table 1.1. The table also includes the
number of degrees of freedom and the joint variables that are associated with each lower
pair.

The revolute or turning pair, R (Fig. 1.2a), permits only relative rotation and is often
referred to as a pin joint. This joint has one degree of freedom.

The prism or prismatic pair, P (Fig. 1.2b), permits only relative sliding motion and
therefore is often called a sliding joint. This joint also has one degree of freedom.

The screw or helical pair, H (Fig. 1.2c), permits both rotation and sliding motion.
However, it only has one degree of freedom, since the rotation and sliding motions are
related by the helix angle of the thread. Thus, the joint variable may be chosen as either
�s or �θ , but not both. Note that the helical pair reduces to a revolute if the helix angle is
made zero, and to a prism if the helix angle is made 90◦.

Table 1.1 Lower Pairs

Pair Symbol Pair Variable Degrees of Freedom Relative Motion

Revolute R �θ 1 Circular

Prism P �s 1 Rectilinear

Screw H �θ or �s 1 Helical

Cylinder C �θ and �s 2 Cylindric

Sphere S �θ , �φ, �ψ 3 Spheric

Flat F �x, �y, �θ 3 Planar


